PHOSPHINSUBSTITUIERTE CHELATLIGANDEN

XXI *. REVERSIBEL SUBSTITUTION VON TETRACARBONYL (PHOSPHINOTHIOFORMAMID)-KOMPLEXEN, (CO) $_4$ M(PS) (M = Cr, Mo, W), MIT TRIORGANOPHOSPHINEN, -ARSINEN UND -STIBINEN

U. KUNZE*, H. JAWAD und E. BOZIARIS

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen (Deutschland)

(Eingegangen den 12. März 1986)

Summary

To investigate the substitution of octahedral, neutral P,S-chelate complexes, the tetracarbonyl(phosphinothioformamide) compounds $(CO)_4MSC(NR^1R^2)PPh_2$ (M = Cr (1), Mo (2), W (3); R^1 = Me, R^2 = H (A), R^1 = Ph, R^2 = H (B) and R^1 = R^2 = Me (C)) were treated with the ligands PPh₃ (a), AsPh₃ (b), SbPh₃ (c), PEt₃ (d) and P(OMe)₃ (e). Unlike the corresponding phosphinothioformimidate complexes with an anionic chelate ligand, no CO substitution occurs, but a nucleophilic cleavage of the metal-sulfur bond under formation of the cis, trans-isomeric complexes with unidentate ligands. The position of the equilibrium depends on steric and kinetic factors. A further equilibrium of the cis-substituted complex and the previous chelate complex is established resulting from the reversible substitution process with increasing kinetic lability from tungsten to chromium. A dissociative mechanism of the chromium complexes starting from the trans form is also discussed. The tungsten complex 3aC shows ideal reversible conditions with complete re-chelation unaffected by isomerisation.

Zusammenfassung

Zur Untersuchung der Substitution oktaedrischer, neutraler P,S-Chelatkomplexe wurden die Tetracarbonyl(phosphinothioformamid)-Verbindungen (CO)₄- $\overline{MSC(NR^1R^2)}$ PPh₂ (M = Cr (1), Mo (2), W (3); R¹ = Me, R² = H (A), R¹ = Ph, R² = H (B) und R¹ = R² = Me (C)) mit den Liganden PPh₃ (a), AsPh₃ (b), SbPh₃ (c), PEt₃ (d) und P(OMe)₃ (e) umgesetzt. Im Unterschied zu den entsprechenden Phosphinothioformimidat-Komplexen mit anionischem Chelatliganden erfolgt keine CO-Substitution, sondern eine nucleophile Spaltung der Metall-Schwefel-Bindung unter Bildung der *cis*, *trans*-isomeren Komplexe mit einzähnig koordinierten

^{*} XX. Mitteilung siehe Lit. 1.

Liganden. Die Lage des Gleichgewichts hängt von sterischen und kinetischen Faktoren ab. Infolge des reversiblen Verlaufs der Substitution stellt sich ein weiteres Gleichgewicht zwischen dem cis-Substitutionskomplex und dem ursprünglichen Chelatkomplex ein, wobei die kinetische Labilität von Wolfram zu Chrom hin zunimmt. Bei den Chrom-Komplexen ist auch ein dissoziativer Rückbildungsmechanismus aus der trans-Form zu diskutieren. Ideale reversible Bedingungen weist der Wolfram-Komplex 3aC auf, bei dem die Rechelatisierung vollständig und ohne Isomerisierung abläuft.

Einleitung

Wir berichteten kürzlich über die Darstellung neuer Penta- und Tetracarbonylmetall-Komplexe mit neutralen sekundären und tertiären Phosphinothioformamid-Liganden durch photochemische Umsetzung der Metallhexacarbonyle $M(CO)_6$ (M = Cr, Mo, W) [2,3]. Die P,S-koordinierten Chelatkomplexe (Mo) eignen sich zur Untersuchung des Substitutionsverhaltens gegenüber σ -Donorliganden der V. Hauptgruppe. Im Gegensatz zu oktaedrischen Komplexen mit anionischem P,S-Chelatliganden, (Mo) (M

1. Präparative Ergebnisse

Für den Zugang zu Tetracarbonylmetall-Komplexen mit einzähnig koordiniertem Phosphinothioformamid-Liganden erwies sich die Einwirkung von Triorganophosphinen, -arsinen und -stibinen auf die Chelatkomplexe 1–3 (A–C) in Tetrahydrofuran bei – 30°C (Methode I) oder in Methanol bei Raumtemperatur (Methode II) als geeignet. Die Reaktion verläuft unter Spaltung der Metall-Schwefel-Bindung ohne CO-Substitution. Hierbei können cis-trans-Isomere entstehen, die spektroskopisch unterscheidbar sind (s. Abschnitt 2). Die Vorteile der Methode II liegen in der Schwerlöslichkeit des Reaktionsprodukts in Methanol, wodurch die Reaktionszeit verkürzt und die Abtrennung erleichtert wird.

Die erhaltenen Komplexe fallen als blassgelbe, kristalline Feststoffe an, die in trockenem Zustand bei Raumtemperatur stabil sind. Sie können ohne Schutzmassnahmen an der Luft gehandhabt werden. In Lösung zerfallen sie dagegen – besonders unter Lichteinwirkung – schon bei Raumtemperatur allmählich unter Rückbildung des Chelatkomplexes und Eliminierung des eingesetzten Liganden. Es handelt sich also grundsätzlich um eine reversible Reaktionsfolge, deren Gleichgewichtslage von den Arbeitsbedingungen abhängt.

2. Spektroskopische Daten

IR-Spektren

Bei trans-Anordnung der Liganden mit D_{4h} -Lokalsymmetrie des $M(CO)_4$ -Gerüstes ist nur eine IR-aktive CO-Valenzschwingung (E_u) zu erwarten, während in cis-Konfiguration (C_{2v}) vier v(CO) (2 $A_1 + B_1 + B_2$) zu beobachten sein sollten. Die gemessenen Spektren entsprechen jedoch nicht immer dem theoretischen Aufspaltungsbild [2,3]. Dies ist einmal auf Symmetrieerniedrigung durch die ungleichen Liganden zurückzuführen, zum anderen können die Verbindungen im KBr-Pressling Veränderungen unterworfen sein. Die Lösungsmittelspektren werden vielfach durch cis-trans-Isomerisierung oder Rückbildung des Chelatkomplexes beeinträchtigt. Die trans-Konfiguration lässt sich eindeutig nur in den Komplexen 1aA, 3aA und 1dB nachweisen, während sie in 1bA erst aus dem 1 H-NMR-Spektrum herzuleiten ist.

31P-NMR-Spektren

Die ³¹P{¹H}-NMR-Spektren erwiesen sich als wesentlich besser zur Strukturaufklärung und Untersuchung der Gleichgewichtslage geeignet. Sämtliche Verbindungen wurden zweimal in THF-Lösung vermessen, wobei die erste Messung bei –40°C erfolgte. Anschliessend wurden die Proben unter Lichtausschluss 5 Min auf +40°C erwärmt und erneut bei –40°C gemessen. Die Triphenylarsin- und -stibin-Komplexe sind durch ein Singulett charakterisiert; dagegen weisen die Triorganophosphin-Komplexe zwei Dubletts infolge der unterschiedlichen, miteinander koppelnden Phosphoratome auf.

Der Zuordnung der cis- und trans-Konfiguration liegen folgende Kriterien zugrunde [9,10]:

- (a) Wie bei den Ausgangskomplexen findet man eine Zunahme der Abschirmung beider Phosphor-Signale vom Chrom zum Wolfram.
- (b) Der Übergang von der Chelat-Funktion zum einzähnig koordinierten Liganden bewirkt in allen Fällen eine Entschirmung des Chelat-Signals P' um 20-30 ppm.
- (c) Dadurch erscheint das P'-Signal mit Ausnahme der Phosphit-Komplexe bei tieferem Feld als das Signal des Liganden (P).
- (d) Wie aus dem Vergleich der PP'-Kopplungskonstanten folgt, treten die Signale des trans-Isomeren bei tieferem Feld auf als diejenigen der cis-Form. Entsprechend weisen die trans-konfigurierten Komplexe die höhere Koordinationsverschiebung auf.
- (e) Wie in der Literatur [9] an zahlreichen Beispielen belegt, sind die *trans*-Kopplungen in Molybdän- und Wolfram-Komplexen grösser als die *cis*-Kopplung. Das gleiche gilt auch für $J(^{183}W-^{31}P)$. Bei den Chromkomplexen ist die Reihenfolge in der Regel umgekehrt.

WICHTIGE IR-FREQUENZEN DER EINZÄHNIG KOORDINIERTEN SUBSTITUTIONSKOMPLEXE (fest, KBr; in Klammern: Lösungsmittel-Spektrum; v (cm⁻¹)) TABELLE 1

Komplex			*(CO)				r(NH)	v ₁ (NCS) a	P2(NCS) a
Cr Mo W	Mo	×							
1aA			2017vw	1947w	1887vs		3370w	1500w	1337w
trans			(2015w	1955w	1891vs	$(CHCl_3)$			
	2ªA		2015m	1919s	1903vs	1874s	3345w	1498m	1337m
	cis		(2014m	1923sh	1903vs	$(CHCl_3)$			
		38A	2017m	1916sh	1888vs	•	3357w	1501w	1340w
		trans	(2018w	1950w	1893vs	$(CHCl_3)$			
1bA ^b			2007w	1945m	1882vs		3365w	1497w	1333w
trans			(2007w	1942vs	1892vs	$(CHCl_3)$			
	2bA		2025s	1924vs	1898vs	1857m	3359m	1505m	1347w
	cis		(2039m	1920vs	1875m	$(CHCl_3)$			
		3bA	2014m	1912s	1891vs	1853s	3354w	1506w	1343w
		cis	(2014m	1922s	1900vs	$(CHCl_3)$			
1cA			2009m	1914s	1897vs	1859s	3353w	1505w	1346w
cis			(2020m	1925s	1900vs	$(CHCl_3)$			

1346w	1246	1343W	1331w		1350w		1352w		1363w		1360w		1360w		1347w		1375w	
1507w		MOIST	1495w		1495w		1498w		1494w		1492w		1491w		1495w		1495w	İ
3356w	2260	3300W	3338w				•		,						3307w			
1862vs	1863s(THF))	(CCI4))	1859sh	$(CHCl_3)$	1859s	1879s(THF))	1854vs	1873sh(CHCl ₃))	1896vs	(CHCl ₃))	1901vs	(CHCl ₃))	1895vs	(CHCl ₃))	1862s	(CHCl ₃))	1888vs	1883s(THF))
1904vs	1908vs	1904vs	1870vs	1885vs	1884vs	1901vs	1880vs	1895vs	1918sh	1910vs	1910sh	1912vs	1905sh	1908vs	1899vs	1896vs	1930s	1899vs
1926vs	1950m	1931s	1948m		1926s	1917s	1919s	1920s	1924vs	1940sh	1930s	1940sh	1918vs	1938sh	1906vs	1924vs	1940s	1918s
2025m	(2012w 2018=	(2021m	2003w	J	2016m	(2018w	2012s	(2020m	2019s	(2028s	2021s	(2032m	2008s	(2020m	2017m	(2019m	2015m	(2018m
	402	ei si					3AB	cis					3eB	cis	3aB	cis	3aC	cis
γχ	cis				SQB	cis					2eB	cis						
			1 dB ⁶	trans					1eB	cis								

^a Thioamid-B,C-Banden [2]. ^b Im Gemisch mit cis-Isomeren, siehe Text.

TABELLE 2

|J|(Hz)) (Sämtliche Verbindungen wurden zweimal vermessen. Zur ersten Messung wurden die Proben bei -40°C vorbereitet und die Spektren direkt registriert. Nach kurzem Erwärmen der Proben unter Lichtausschluss auf +40°C wurde die zweite Messung erneut bei -40°C durchgeführt. Die chemischen Verschiebungen und Kopplungskonstanten der mit * bezeichneten Stereoisomeren erschienen bei der ersten Messung. Die Zuordnung der Konfiguration von 1bA-3bA und 1cA-3cA wurde $^{31}P\{^{1}H\}$ -NMR-DATEN DER SUBSTITUIERTEN TETRACARBONYL-KOMPLEXE $(CO)_{4}(L)M(\widehat{PS})$ (M=Cr, Mo, W) $(Lsg. THF, ext. H_{3}PO_{4}-Standard, \delta (ppm), Mean of the content of the cont$ dem IR-Spektrum entnommen)

										-
Komplex				δ(P′) "	δ(P) "	Δδ(P) ^ε	² J(PP')	'J(WP) 4	1J(WP') 4	δ(P′′) [¢]
ل ان	Мо	>								
1aA			cis							58.6
			trans*	94.6	72.8	78.2	22.7			
	2aA		cis*	58.3	35.4	40.8	26.3			34.4
			trans							
		3aA	cis	43.6	20.0	25.4	24.3	233.0	237.3	16.4
			trans*	49.1	26.2	32.6	59.0	287.0	286.3	
1bA			cis							58.6
			trans*	76.3						
	2PA		cis*	58.4						34.4
			trans							
		3 b A	cis*	44.2					239.3	16.4
			trans							

		cis*	84.7						58.6
ZcA		trans cis*	63.6						34.4
	3cA	cis*	48.3					248.5	16.4
		trans							
		cis	7.67	28.8	40.2	33.0			63.3
		trans*	97.4	48.5	59.9	25.0			
2dB		cis*	60.7	11.9	23.3	26.0			38.9
		trans*	72.9	29.0	40.4	30.0			
	SE SE	cis*	43.5	-4.8	9.9	24.0	224.7	241.5	20.4
		trans	53.3	3.9	15.3	54.5	261.5	283.4	
		cis*	80.7	178.0	38.0	48.5			63.3
		trans	92.6	194.1	54.1	21.0		•	
2eB		cis*	62.1	159.3	19.3	35.0			38.9
		trans*	80.4	177.6	37.6	49.5			
	3eB	cis*	45.3	138.9	-1.9	31.0	381.6	234.0	20.4
		trans							
	3aB	cis*	47.8	19.6	25.0	24.7	232.0	235.0	20.4
		trans	59.4	25.9	31.3	59.0			
	3 8 C	cis*	43.1	18.2	23.6	24.7	231.0	225.5	24.6
		trans							

^a Signal des einzähnig koordinierten Chelatliganden (PS). ^b Signal des Liganden L. ^c Koordinationsverschiebung δ(Komplex) – δ(Ligand). ^d J(¹⁸³W – ³¹P). ^c Referenzsignal des Ausgangs-Chelatkomplexes.

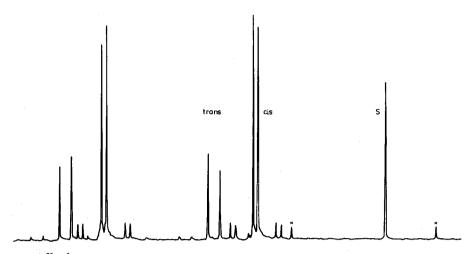


Fig. 1. ³¹P{¹H}-NMR-Spektrum des Wolfram-Komplexes 3aA (Lsg. THF, ext. Standard H₃PO₄ (S), 2. Messung). Die mit x markierten Peaks entsprechen dem Chelat-Komplex 3A und Triphenylphosphin.

Im einzelnen wurden folgende Ergebnisse erhalten:

- (a) Der Chromkomplex 1aA liegt unabhängig von der Messtemperatur ausschliesslich in der trans-Form, der entsprechende Molybdänkomplex 2aA in der cis-Form vor. Der homologe Wolframkomplex 3aA zeigt in Lösung dynamisches Verhalten in Form eines temperaturabhängigen Gleichgewichts von cis- und trans-Isomeren und dem Ausgangskomplex (Fig. 1). Das gleiche gilt für die analoge N-Phenylverbindung 3aB. Die unterschiedliche Richtung der Gleichgewichtseinstellung (3aA: trans → cis, 3aB: cis → trans) ist wohl auf einen Löslichkeitseffekt zurückzuführen [10,11]. (b) Bei Temperaturerhöhung (2. Messung) beobachtet man die allmähliche Rückbildung des Chelatkomplexes und Eliminierung von Triphenylphosphin. Die Substitution und Rechelatisierung des Chromkomplexes 1aA wird zusätzlich von der Bildung des Bis(phosphin)-Komplexes trans-(PPh₃)₂Cr(CO)₄ durch partielle Abdissoziation des Chelatliganden begleitet.
- (c) Die übrigen Chromkomplexe 1bA, 1cA, 1dB, 1eB fallen alternierend in der transund cis-Form an. Hier spielen sicher sowohl sterische Faktoren als auch die unterschiedliche Löslichkeit der Verbindungen eine Rolle. Bemerkenswert ist die cis-Konfiguration von 1cA mit dem grossen SbPh₃-Liganden. Eine Isomerisierung wird nur bei 1dB ($trans \rightarrow cis$) und 1eB ($cis \rightarrow trans$) beobachtet. Die Rechelatisierung lässt sich hier nicht nachweisen.
- (d) Die Molybdän- und Wolfram-Komplexe mit AsPh₃- und SbPh₃-Liganden **2bA**, **2cA**, **3bA** und **3cA** existieren generell als *cis*-Isomere. Bei Temperaturerhöhung erfolgen neben der Rechelatisierung besonders beim Molybdän Zersetzungsreaktionen [11], z.B. lässt sich in Lösungen von **2cA** IR-spektroskopisch eine Mo(CO)₅-Stufe nachweisen.
- (e) Die Molybdänkomplexe **2dB** und **2eB** mit PEt₃- und P(OMe)₃-Liganden liegen bereits bei tiefer Temperatur als *cis-trans*-Gemische im Verhältnis 4/1 bzw. 3/1 vor, das sich beim Erwärmen wenig ändert. Die thermisch labile Verbindung **2dB** zersetzt sich bei Raumtemperatur uneinheitlich. Eine Rückbildung der Chelatkomplexe ist wie bei den Chromverbindungen **1dB** und **1eB** nicht zu beobachten.

- (f) Die Wolframkomplexe 3dB und 3eB fallen als reine cis-Isomere an. Nur bei 3dB ist eine Isomerisierung nachweisbar; das Gleichgewicht stellt sich äusserst langsam ein.
- (g) Die Substitution des N, N-Dimethyl-phosphinothioformamid-Komplexes 3C mit PPh₃ liefert das cis-Isomere. Bei Temperaturerhöhung erfolgt keine Isomerisierung, sondern praktisch quantitative, einheitliche Rückbildung des Chelatkomplexes.

¹H-NMR-Spektren

Die ¹H-NMR-Spektren der ElPh₃-Komplexe (El = P, As, Sb) 1aA-3cA zeigen bei tiefer Temperatur neben der Aromatenregion einen Resonanzbereich von δ 3.25–2.75 ppm mit dem Dublett des N-Methylsignals. Die cis- und trans-Isomeren unterscheiden sich in der chemischen Verschiebung (cis: $\delta \leq 3.0$ ppm) [2]; die CH₃-NH-Kopplung ist in den meisten Fällen ausgeprägt, während die heteroallylische ⁴J(PH)-Kopplung nur bei den Wolfram-Komplexen 3aA-3cA zu beobachten ist [12]. Wegen der generell schlechten Auflösung der Tieftemperatur-Spektren und dem Nachweis der Isomerisierung wurden in einigen Fällen auch Spektren bei Raumtemperatur aufgenommen.

Die NMR-Spektren der N-Phenyl-phosphinothioformamid-Komplexe 3aB und 1dB-3eB sind dagegen auch bei tiefer Temperatur gut aufgelöst. Im Unterschied zur oben stehenden Gruppe ist das NH-Signal in allen Fällen nachweisbar; teilweise ist sogar die Dublettaufspaltung durch Phosphorkopplung zu erkennen [13]. Wegen der komplexen Struktur der P-Ethylsignale wurde von 3dB ein 400 MHz-Spektrum aufgenommen. Man findet für die Methylenprotonen ein äquidistantes Pseudo-Quintett mit dem Intensitätsverhältnis 1/4/6/4/1, das in erster Näherung als Dublett von Quartetts mit $|^2J(PH)| \sim |^3J(HH)|$ zu interpretieren ist. Im Unterschied zum Chelatkomplex fac-(CO)₃(PEt₃)MnSC(NMe)PPh₂ [4] sind die CH₂-Protonen in 3dB isochron, so dass nur die Kopplung mit Phosphor und Methyl wirksam wird. Die Methylprotonen erscheinen ebenfalls als äquidistantes Fünflinien-Signal, jedoch im Verhältnis 1/2/2/2/1, wie man es für ein Dublett von Tripletts mit $|^3J(PH)| \sim 2|^3J(HH)|$ erhält.

Aufgrund des ¹H-NMR-Spektrums liegt **1eB** bei -30° C in der *cis*-Form vor. Das NH-Dublett erscheint bei δ 10.15, das O-CH₃-Dublett bei 3.53 ppm. Nach dem Erwärmen der Probe beobachtet man auch die entsprechenden Signale des *trans*-Isomeren bei δ 9.24 und 3.67 ppm. Im Spektrum von **2eB** findet man bereits bei tiefer Temperatur die *cis*- und *trans*-Form, während **3eB** nur als *cis*-Isomeres existiert.

3. Diskussion

Nach den Regeln der Substitution am oktaedrischen Metallcarbonyl-Komplex [14–16] ist davon auszugehen, dass bei der nucleophilen Substitution des Chelat-komplexes zunächst das cis-Isomere entsteht, das gewöhnlich auch als Primärprodukt auskristallisiert. Die bevorzugte Bildung der trans-Form beim Chrom lässt sich vorwiegend auf sterische Gründe zurückführen [7]; allerdings sind diese nicht so zwingend, dass eine Gesetzmässigkeit abgeleitet werden kann wie besonders die cis-Form des SbPh₃-Komplexes 1cA belegt. Die unerwartete Bildung des trans-konfigurierten Komplexes 3aA ist auf einen Löslichkeitseffekt zurückzuführen wie der Vergleich mit 3aB zeigt. Das Überwiegen kinetischer Faktoren wird bei den

TABELLE 3

¹H-NMR-DATEN DER TETRACARBONYL-KOMPLEXE (CO)₄(L)M(PS) (M = Cr, Mo, W) (Lsg. CDCl₃, int. TMS-Standard, δ (ppm), |J| (Hz)) (Alle Verbindungen wurden bei -30°C vermessen; die Spektren der mit * bezeichneten Isomeren wurden bei Raumtemperatur registriert)

	laA	2a.A	3aA	•	1bA	2bA	3bA	1cA	2cA	3cA
	trans	Cis	trans	Cis	trans	cis	cis	cis	cis	cis*
δ(C ₆ H ₅)	8.2-6.8	7.48-7.33	7.45-7.34		7.45-7.30	7.75-6.90	7.43-7.29	7.79-6.82	7.74-7.01	7.34-7.28
8(N-CH ₃)	3.2s,b	2.99dd	3.24dd	3.00dd	3.25d	2.99d	3.02dd	2.73d	2.86d	2.93dd
3/(HH)		8.4	8.4	8.4	4.6	4.7	8.4	4.5	4.7	4.5
4J(PH)		8.0	8.0	8.0			8.0			8.0
	1dB	2dB	34B	1eB		2eB			•	3aC
	trans	cis	cis	trans	cis	trans	cis	cis	cis	cis
8(NH)	9.5s,b	9.8d	P8.6	9.24d	10.15d		10.2b		9.44d	
3/(PH)		4.4	4.4	3.8	4.5				4.2	
8(C,H,)	8.1 - 6.9	8.0-7.0	7.9–7.1	7.8-7.0		7.9–6.9			7.7-7.0	7.6-7.0
8(O-CH ₃)				(3.67d) ^a	3.53d	3.54d	3.47d			
³ J(PH)				11.0	10.7	10.7	11.1	11.3		
8(N-CH ₃),										3.49s
8(N-CH1),										3.04s
8(CH ₂ CH ₃) c	2.3-1.6	2.04-1.23	1.54dq "							2
² J(PH)			6.7							
37(HH)			7.6							
$\delta(\mathrm{CH}_2\mathrm{CH}_3)^c$	1.16dt	0.91dt	0.90dt d							
3/(PH)	14.8	15.0	15.1							
3 / (HH)	6.9	7.3	7.6							

^a Da ein Gemisch aus cis- und trans-Isomeren vorliegt, überlagern sich die beiden Dubletts zu einem Pseudo-Triplett. ^b Signale der cis und trans zu Phosphor ständigen N-Methylgruppen. ^c Zur Erläuterung der Multiplett-Strukturen siehe Text. ^d 400 MHz-Spektrum.

PEt₃- und P(OMe)₃-Komplexen sichtbar, deren Isomerisierung sehr langsam erfolgt, so dass sich unter den Messbedingungen das thermodynamische *cis-trans*-Gleichgewicht noch nicht eingestellt hat und in den meisten Fällen die *cis*-Form vorherrscht. Aus der Literatur [11,17] ist bekannt, dass bei höherer Temperatur (80–100°C) die *trans*-Form von Bis(phosphin)-Komplexen überwiegt. Die thermische Isomerisierung verläuft in der Regel nach einem intramolekularen Mechanismus [18]. Im Unterschied zum *cis*-Bis(tributylphosphin)-Komplex [17] isomerisiert *cis*-(PPh₃)₂Mo(CO)₄ thermisch intermolekular [19]. Dagegen erfolgt photochemisch bereits bei Raumtemperatur eine Umkehrung des Gleichgewichts (*trans* $\rightarrow cis$) [20].

Die Bedeutung sterischer Faktoren für die Lage des cis-trans-Gleichgewichts wird an einem Vergleich der drei Phosphin-Chromkomplexe 1aA, 1dB und 1eB sichtbar. Der trans-Anteil nimmt synchron mit dem Tolman-Parameter θ [21–23] von 100 auf 50% ab. Anomalien in der Tolman-Funktion, die von einigen Autoren [7] auf den Einfluss der π -Akzeptorstärke, von anderen [8] auf fehlerhafte Einschätzung des Tolmanschen Kegelwinkels zurückgeführt werden, konnten wir nicht bestätigen. Beim Trimethylphosphit-Liganden (θ 107°) wird bereits die kritische Grenze unterschritten, und die Gleichgewichtseinstellung erfolgt von cis nach trans.

Kinetische Faktoren sind sicher für die langsame Äquilibrierung der Wolfram-Komplexe 3dB und 3eB verantwortlich. Bei 3eB lässt sich selbst nach eintägigem Stehenlassen der Reaktionslösung NMR-spektroskopisch kein *trans*-Isomeres nachweisen.

Komplex L	laA PPh ₃	1dB PEt ₃	leB P(OMe) ₃	
trans-Anteil a (%)	100	92	50	
θ (°)	145	132	107	

^a Die Proben (Lsg. in THF) wurden 18 h bei Raumtemperatur aufbewahrt und anschliessend bei −40°C vermessen (³¹P-NMR).

Da die Substitution reversibel verläuft, stellt sich in der Lösung neben dem cis-trans-Gleichgewicht auch das Gleichgewicht zwischen cis-Substitutionskomplex und Ausgangs-Chelatkomplex ein. Die kinetische Labilität nimmt bei den sekundären Thioamid-Komplexen vom Wolfram zum Chrom hin zu. Wie oben erwähnt, bevorzugt das Chrom die trans-Anordnung, so dass in diesem Fall auch ein dissoziativer Rückbildungsmechanismus diskutiert werden kann [24]. Dieser Vorschlag wird durch das Auftreten eines zusätzlichen Signals im ³¹P{¹H}-NMR-Spektrum von 1aA unterstützt. Das Singulett hat die gleiche chemische Verschiebung wie das PPh₃-Signal des einzähnig koordinierten Komplexes, und die Intensität nimmt beim Erwärmen zu. In Übereinstimmung mit dem Massenspektrum nehmen wir an, dass es sich um den disubstituierten Komplex trans-(PPh₃)₂Cr(CO)₄ handelt. Nach dem Prinzip der mikroskopischen Reversibilität könnte in diesem Fall die Substitution über den fünffach koordinierten, quadratisch-pyramidalen Übergangs-

zustand direkt zum trans-Isomeren erfolgen, so dass neben dem oben abgebildeten "linearen" Reaktionsschema auch ein cyclischer Prozess in Frage kommt.

Neuere kinetische Untersuchungen zur Substitution von photochemisch aktivierten Molybdän-Komplexen mit unsymmetrischem Chelatliganden, (NP)Mo(CO)₄ (NP = 1-Diethylamino-2-diphenylphosphinoethan), ergaben, dass die Reaktion unter primärer Spaltung der Mo-N-Bindung durch einen fünffach koordinierten Übergangszustand verläuft [6]. Dabei befindet sich die Koordinationslücke mit gleicher Wahrscheinlichkeit in cis- oder trans-Position zum Chelatliganden, jedoch erweist sich die Geschwindigkeitskonstante der cis-Substitution als die wesentlich höhere [25]. Damit findet die kinetische Präferenz der cis-Isomeren in den meisten Substitutionskomplexen eine plausible Erklärung. Dies deckt sich mit früheren Erkenntnissen von Darensbourg [20], dass bei der photochemischen Substitution von Mo(CO)₆ mit PPh₃ direkt die cis- und trans-Formen von (PPh₃)₂Mo(CO)₄ entstehen und dass unter diesen Bedingungen leicht trans-cis-Isomerisierung erfolgt. Dieser Mechanismus würde die Begünstigung der Rechelatisierung durch Lichteinwirkung im vorliegenden Fall verständlich machen.

Ein Vergleich der Rückbildungstendenz des Chelat-Komplexes in Abhängigkeit vom Liganden zeigt eine klare Grenze zwischen den Triarylverbindungen ElPh₃ (El = P, As, Sb) und PEt₃ bzw. P(OMe)₃. Ebenso wie die Einstellung des *cis-trans*-Gleichgewichts bei den letztgenannten Liganden verzögert ist, lässt sich auch die Rückbildung des Chelat-Komplexes nicht nachweisen.

Die günstigsten Voraussetzungen für einen reversiblen Prozess bieten offenbar die N, N-Dimethyl-phosphinothioformamid-Komplexe, bei denen keine cis-trans-Isomerisierung beobachtet wird. So erfolgt die Rechelatisierung von 3aC in THF-Lösung bei 40°C schon nach 5 Min quantitativ. Allerdings ist die Geschwindigkeit der Substitution wesentlich geringer, so dass bei den analogen Chrom- und Molybdän-Komplexen nur unvollständige Reaktion stattfindet.

Experimenteller Teil

Alle Umsetzungen wurden unter Argon-Atmosphäre in getrockneten, argongesättigten Lösungsmitteln durchgeführt. Die Ausgangs-Chelatkomplexe wurden nach der Literaturvorschrift [2,3] dargestellt.

Verwendete Spektrometer. IR: Infrarot-Spektralphotometer 598 von Perkin-Elmer mit Datenstation 3600. NMR: Bruker WP 80, HFX 90 und WM 400. MS: Varian MAT 711A (FD-Methode, 8 kV, 50°C).

Darstellung der Substitutionskomplexe

Methode I. Zu einer Aufschlämmung von 0.5 mmol Chelatkomplex und 0.5 mmol ElPh₃ (El = P, As, Sb) in 25 ml n-Hexan wird bei Raumtemperatur THF zugetropft, bis alles in Lösung geht. Anschliessend wird das rote Reaktionsgemisch bei $-30\,^{\circ}$ C aufbewahrt. Nach 5-7 Tagen haben die Lösungen eine gelbe Farbe angenommen, und die Substitutionsverbindungen fallen hierbei analysenrein in Form kleiner gelber Nadeln an.

TABELLE 4
ANALYTISCHE DATEN DER SUBSTITUTIONSKOMPLEXE

Komp	olex		Molmasse	Analysen	(Gef. (ber	.) (%))		Ausbeute
Cr	Мо	W	(Gef. (ber.)) ^a	C	Н	N	s	(%)
laA			685	60.54	4.48	1.78	5.28	90
			(685.64)	(63.06)	(4.23)	(2.04)	(4.67)	
	2aA		729	59.00	3.95	1.95	4.47	71
			(729.64)	(59.26)	(4.00)	(1.92)	(4.39)	
		3aA	817	52.91	3.51	1.69	3.71	96
			(817.49)	(52.89)	(3.57)	(1.71)	(3.91)	
bA			729	59.33	3.73	1.91	4.62	87
			(729.62)	(59.26)	(4.00)	(1.92)	(4.39)	
	2bA		773	52.89	3.84	1.71	4.06	74
			(773.53)	(55.89)	(3.75)	(1.81)	(4.14)	
		3bA	861	49.94	3.49	1.64	3.68	95
			(861.41)	(50.20)	(3.40)	(1.63)	(3.72)	
cA			775	53.17	4.01	1.91	4.57	90
			(776.42)	(55.69)	(3.74)	(1.80)	(4.12)	
	2cA		819	53.80	3.69	1.71	4.13	81
			(820.36)	(52.70)	(3.54)	(1.70)	(3.90)	
		3cA	907	47.51	3.08	1.51	3.27	97
			(908.30)	(47.60)	(3.22)	(1.54)	(3.52)	
dΒ			603	56.82	5.19	2.27	5.19	87
			(603.57)	(57.71)	(5.14)	(2.32)	(5.30)	
	2dB		647	54.05	4.99	2.17	5.71	89
			(647.52)	(53.79)	(4.79)	(2.16)	(4.95)	
		3dB	735	47.63	4.43	1.91	4.79	84
			(735.43)	(47.40)	(4.25)	(1.90)	(4.26)	
еB			609	50.65	4.16	2.24	5.11	74
			(609.49)	(51.19)	(4.13)	(2.30)	(5.25)	
	2eB		653	47.46	4.03	2.11	5.10	91
			(653.44)	(47.83)	(3.80)	(2.15)	(4.90)	
		3e B	741	41.11	4.36	1.83	3.94	87
			(741.34)	(42.15)	(3.40)	(1.89)	(3.94)	
		3aB	879	54.79	3.03	1.56	4.23	70
			(879.51)	(55.98)	(3.52)	(1.59)	(3.64)	
		3aC	831	53.12	5.12	1.65	3.16	88
			(831.52)	(53.44)	(3.76)	(1.68)	(3.85)	

^a MS, FD-Methode, bezogen auf ⁹⁶Mo, ¹²¹Sb und ¹⁸⁴W.

Methode II. Man suspendiert 0.5 mmol Chelatkomplex in 3 ml absolutem Methanol und versetzt mit der äquimolaren Menge Ligand. Die Lösungen werden unter Lichtausschluss 5 h bei Raumtemperatur gerührt (bei 3aC 25 h). Die entstehenden gelben Kristalle werden abfiltriert, mit Petrolether (30–50°C) gewaschen und im Vakuum getrocknet.

Wegen des rationelleren Ablaufs wurden alle in dieser Arbeit beschriebenen Komplexe nach der zweiten Methode gewonnen. Die analytischen Daten sind in Tabelle 4 zusammengestellt.

Dank

Wir danken Herrn Dipl.-Chem. R. Burghardt für die experimentelle Mitarbeit. Der Deutschen Forschungsgemeinschaft gilt unser Dank für die finanzielle Förderung und die Leihgabe eines IR-Spektrometers mit Datenstation.

Literatur

- 1 U. Kunze, H. Jawad und R. Burghardt, Z. Naturforsch., zur Veröffentlichung angenommen.
- 2 U. Kunze und H. Jawad, J. Organomet. Chem., 277 (1984) C31; Z. Anorg. Allg. Chem., 532 (1986) 107
- 3 U. Kunze, H. Jawad, W. Hiller und R. Naumer, Z. Naturforsch. B, 40 (1985) 512.
- 4 U. Kunze und A. Bruns, J. Organomet. Chem., 292 (1985) 349.
- 5 G.K. Anderson und R. Kumar, Inorg. Chem., 23 (1984) 4064.
- 6 G.R. Dobson, I. Bernal, G.M. Reisner, C.B. Dobson und S.E. Mansour, J. Amer. Chem. Soc., 107 (1985) 525.
- 7 D.T. Dixon, J.C. Kola und J.A.S. Howell, J. Chem. Soc., Dalton Trans., (1984) 1307.
- 8 M.L. Boyles, D.V. Brown, D.A. Drake, C.K. Hostetler, C.K. Maves und J.A. Mosbo, Inorg. Chem., 24 (1985) 3126.
- 9 P.S. Pregosin und R.W. Kunz, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes, Springer Verlag Berlin-Heidelberg-New York, 1979.
- 10 W. Buchner und W.A. Schenk, Inorg. Chem., 23 (1984) 132.
- 11 W.A. Schenk, J. Organomet. Chem., 184 (1980) 195; 184 (1980) 205.
- 12 U. Kunze, A. Bruns und D. Rehder, J. Organomet. Chem., 268 (1984) 213.
- 13 A. Antoniadis, U. Kunze und M. Moll, J. Organomet. Chem., 235 (1982) 177.
- 14 G.R. Dobson, Acc. Chem. Res., 9 (1976) 300.
- 15 D.J. Darensbourg, Adv. Organomet. Chem., 21 (1982) 113.
- 16 J.A.S. Howell und P.M. Burkinshaw, Chem. Rev., 83 (1983) 557.
- 17 D.J. Darensbourg, Inorg. Chem., 18 (1979) 14.
- 18 J.C. Bailar, Jr., J. Inorg. Nucl. Chem., 8 (1958) 165.
- 19 D.J. Darensbourg und R.L. Kump, Inorg. Chem., 17 (1978) 2680.
- 20 D.J. Darensbourg und M.A. Murphy, J. Amer. Chem. Soc., 100 (1978) 463.
- 21 C.A. Tolman, Chem. Rev., 77 (1977) 313.
- 22 T. Bartik, T. Himmler, H.G. Schulte und K. Seevogel, J. Organomet. Chem., 272 (1984) 29.
- 23 T. Bartik und T. Himmler, J. Organomet. Chem., 293 (1985) 343.
- 24 D.J. Darensbourg und A.H. Graves, Inorg. Chem., 18 (1979) 1257.
- 25 G.R. Dobson, C.B. Dobson und S.E. Mansour, Inorg. Chem., 24 (1985) 2179.